
Abstract. Starting from the Hohenberg–Kohn theorem,
atomic and molecular energies have been expressed rig-
orously as functionals of the electronic electrostatic
potential, Velec(r). Explicit formulations have been
derived for the functionals representing the kinetic
energy and electronic interaction contributions to the
total energies.
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Introduction

It was the work of Scrocco, Tomasi and their
colleagues that led to the emergence and eventual wide
adoption of the molecular electrostatic potential as a
tool for interpreting and predicting molecular inter-
active behavior. The first paper appeared in 1970 [1]
and was followed by many more, with reviews being
published in 1973 [2] and 1978 [3]. (For an excellent
account of the origins and evolution of this program,
see Tomasi et al. [4].) Prior to this, theoretical analyses
of molecular reactivity had largely focused upon var-
ious proposed indices, such as atomic charges, free
valencies, frontier electron densities, localization
energies, etc. [5, 6, 7, 8, 9, 10, 11, 12, 13]. While these
can sometimes produce useful insights and correla-
tions, they are defined quantities, and therefore
inherently arbitrary. In contrast, the electrostatic
potential is a real physical property, an observable,
which can be determined experimentally, by dif-
fraction techniques [14, 15, 16, 17, 18] as well as

computationally. Thus it provides a more rigorous
basis for analyzing reactive behavior, and has indeed
been used quite successfully for this purpose, particu-
larly for noncovalent interactions and the early stages
of processes that involve bond rupture/formation and/
or charge polarization [1, 2, 3, 4, 14, 19, 20, 21, 22,
23, 24, 25, 26].

The electrostatic potential V(r) at any point r in the
space of a system of nuclei and electrons is the sum of
nuclear and electronic contributions,

V rð Þ ¼ Vnuc rð Þ þ Velec rð Þ ð1Þ

where

Vnuc rð Þ ¼
X

A

ZA

RA � rj j ð2Þ

and

Velec rð Þ ¼ �
Z

q r0ð Þdr0
r0 � rj j ð3Þ

ZA is the charge on nucleus A, located at RA, and q(r) is
the electronic density. The latter is intimately linked to
Velec(r) and V(r), not only through Eqs. 1 and 3 but also
via Poisson’s equation, in either the form

r2Velec rð Þ ¼ 4pq rð Þ ð4Þ

or

r2V rð Þ ¼ 4pq rð Þ � 4p
X

A

ZAd RA � rð Þ ð5Þ

In 1964, Hohenberg and Kohn showed that q(r)
determines the nuclear potential Vnuc(r) of a ground-
state system and therefore specifies its Hamiltonian [27];
thus the electronic energy is a functional of the electronic
density:
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Eelec ¼ Eelec q rð Þ½ � ð6Þ

Since the contribution of the nuclear–electronic inter-
action to the electronic energy is known exactly,

Vne ¼ �
X

A

Z
ZA

RA � rj j q rð Þdr ð7Þ

then Eelec [q(r)] can be expressed rigorously as [27]

Eelec q rð Þ½ � ¼ �
X

A

Z
ZA

RA � rj jq rð Þdrþ F q rð Þ½ � ð8Þ

The functional F[q(r)] represents the kinetic and the
interelectronic repulsion energies,

F q rð Þ½ � ¼ T q rð Þ½ � þ Vee q rð Þ½ � ð9Þ

and is not known, although considerable progress has
been made in developing effective formulations of it [28,
29, 30, 31, 32]; these have led to the evolution of density
functional theory into a powerful computational tool.

The electrostatic potential produced by the electrons
at any nucleus A is given by

V0;A;elec ¼ �
Z

q rð Þ
RA � rj jdr ð10Þ

Combining Eq. 10 with the electronic energy functional,
Eq. 8, and invoking Eq. 4 yields

Eelec Velec rð Þ½ � ¼
X

A

ZAV0;A;elecþ= Velec rð Þ½ � ð11Þ

where =[Velec(r)] is the functional analogue of F[q(r)].
The total energy is obtained by adding the internuclear
interaction term

Vnn ¼
1

2

X

A

ZA

X

B6¼A

ZB

RB � RAj j ¼
1

2

X

A

ZAV0;A;nuc ð12Þ

in which Eq. 2 was used to replace the second summa-
tion. Thus,

Etot Velec rð Þ½ � ¼ Eelec Velec rð Þ½ � þ Vnn ð13Þ

¼
X

A

ZAV0;A;elec þ = Velec rð Þ½ � þ 1

2

X

A

ZAV0;A;nuc ð14Þ

¼
X

A

ZA V0;A;elec þ
1

2
V0;A;nuc

� �
þ= Velec rð Þ½ � ð15Þ

Equations 11 and 15 show that both Eelec and Etot can
be viewed, rigorously, as functionals of Velec(r). This
statement is not contradicted by the presence of V0,A,nuc

in Eq. 15 because Vnuc(r) is determined by q(r)
(Hohenberg–Kohn theorem) which in turn is related to
Velec(r) by Poisson’s equation. Thus, as has been pointed

out on several occasions recently [33, 34, 35, 36, 37], the
role of the electrostatic potential is a very fundamental
one, not limited to analyzing molecular reactivity.
Equations 11 and 15 indicate the possibility of relating it
exactly to atomic and molecular energies. This has been
done, by means of the Hellmann–Feynman theorem, as
shall now be discussed. We shall also develop explicit
representations of the functional =[Velec(r)].

Exact atomic and molecular energy formulas

Atoms

For a system having energy E, Hamiltonian H, and
described by the wave function Y such that E=
ÆYŒHŒYæ, the Hellmann–Feynman theorem states that
[38, 39]

@E
@k
¼ W

@H

@k

����

����W
� �

ð16Þ

in which k is any parameter appearing in H and the
derivatives are taken with all other parameters being
held constant.

For an N-electron atom with energy Eat, it follows
that [40, 41, 42, 43]

@Eat

@Z

� �

N
¼ �

Z
q rð Þdr

r
¼ V0;elec ð17Þ

where V0,elec is the electrostatic potential at the nucleus
due to the electrons, Eq. 10, with r being measured from
the nucleus. Integration of Eq. 17 yields [40, 44, 45]

Eat ¼
ZZ

Z 0¼0

V0;elec Z 0ð Þ
� 	

NdZ 0 ð18Þ

which can be converted by integration by parts into [44]

Eat ¼ 0:5ZV0;elec

� 0:5

ZZ

Z 0¼0

Z 0
@V0;elec Z 0ð Þ

@Z 0

� �
� V0;elec Z 0ð Þ

� �

N
dZ 0

ð19Þ

or [45]

Eat ¼ ZV0;elec �
ZZ

Z 0¼0

Z 0
@V0;elec Z 0ð Þ

@Z 0

� �� �

N
dZ 0 ð20Þ

Equations 18–20 are equivalent exact expressions
that relate the energy of the atom to the electrostatic
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potential at its nucleus. While Eq. 18 should be the
easiest to apply, the others have certain features that are
of considerable conceptual interest. First, by taking the
virial theorem

Eat ¼ 0:5 Vne þ Veeð Þ ¼ 0:5ZV0;elec þ 0:5Vee ð21Þ

in conjunction with Eq. 19, one obtains,

Vee ¼ �
ZZ

Z 0¼0

Z 0
@V0;elec Z 0ð Þ

@Z 0

� �
� V0;elec Z 0ð Þ

� �

N
dZ 0 ð22Þ

Equation 22, rigorously formulates the two-electron
property Vee in terms of the one-electron V0,elec.

A more interesting result, from the standpoint of our
present objectives, comes from writing the atomic ver-
sion of Eq. 15,

Eat ¼ ZV0;elec þ =at Velec rð Þ½ � ð23Þ

Comparison of Eqs. 20 and 23 leads to,

=at Velec rð Þ½ � ¼ �
ZZ

Z 0¼0

Z 0
@V0;elec Z 0ð Þ

@Z 0

� �� �

N
dZ 0 ð24Þ

The right side of Eq. 24 can be put explicitly in terms
of Velec(r) by invoking spherical symmetry for the atom
[46] and Eq. 4; thus,

V0;elec ¼ �
Z

q rð Þdr
r
¼ �4p

Z1

r¼0

rq rð Þdr ð25Þ

¼ �
Z1

r¼0

1

r
@

@r
r2
@Velec rð Þ
@r

� �
dr ¼ �

Z1

r¼0

@2

@r2
rVelec rð Þð Þdr

ð26Þ

so that,

=at Velec rð Þ½ � ¼
ZZ

Z 0¼0

Z 0
@

@Z 0

Z1

r¼0

@2

@r2
rVelec r; Z 0ð Þð Þdr

2
4

3
5

N

dZ 0

ð27Þ

Molecules

For molecules, one could apply the Hellmann–Feynman
theorem to obtain the analogue of Eq. 17:

@Emol

@ZA

� �

N ;ZB 6¼A; Rif g
¼ V0;A ð28Þ

V0,A is the electrostatic potential at nucleus A that is
produced by the electrons and other nuclei,

V0;A ¼
X

B6¼A

ZB

RB � RAj j �
Z

q rð Þdr
r� RAj j ð29Þ

¼
X

B6¼A

ZB

RB � RAj j þ V0;A;elec ð30Þ

and the derivative in Eq. 28 is to be taken while holding
fixed the number of electrons, all other nuclear charges,
and all nuclear positions.

An alternative procedure, which will be adopted
here, is to follow Wilson [47] and introduce into the
molecular Hamiltonian a scaling parameter k such that
the charge on any nucleus is Z 0i ¼ kzi; where k can vary
between zero and one. In the actual molecule, k=1 and
Z 0i ¼ zi ¼ Zi: The use of k allows all of the nuclear
charges to vary in a concerted manner between zero and
their true values.

Then by the Hellmann–Feynman theorem, Eq. 16,
one obtains [47],

@Emol

@k

� �

N ; zif g; Rif g

¼ 2k
X

A

X

B>A

zAzB
RB � RAj j �

X

A

zA

Z
q r; kð Þdr
r� RAj j ð31Þ

Integrating Eq. 31 between k=0 and k=1 [47],

Emol ¼
X

A

X

B>A

ZAZB

RB � RAj j �
X

A

zA

Z1

k¼0

Z
q r; kð Þdr
RA � rj j dk

ð32Þ

It has been shown [44] that Eq. 32 can be converted to,

Emol ¼
X

A

zA

Z1

k¼0

V0;A kð Þ
� 	

Ndk ð33Þ

(N,{zi} and {Ri} are to be kept constant throughout this
derivation, even if this is not explicitly indicated.) Inte-
grating Eq. 33 by parts,

Emol ¼
X

A

ZAV0;A �
X

A

zA

Z1

k¼0

k
@V0;A kð Þ
@k

� �

N
dk ð34Þ

Equations 33 and 34 are the molecular analogues of
Eqs. 18 and 20; it is notable they correspond essentially
to simply summing their atomic counterparts over the
individual atoms. The molecular version of Eq. 19 has
also been derived [44, 45].
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Substituting for V0,A in Eq. 34 by means of Eq. 30,

Emol ¼
P
A

ZA V0;A;elec þ
P
B6¼A

ZB

RB�RAj j

" #

�
P
A

zA
R1

k¼0
k @
@k V0;A:elec kð Þ þ

P
B 6¼A

kzB
RB�RAj j

" #

N

dk

ð35Þ

and carrying out the integration over the nuclear term,

Emol ¼
P
A

ZA V0;A;elec þ
P
B 6¼A

ZB

RB�RAj j

" #
� 1

2

P
A

ZA

P
B6¼A

ZB

RB�RAj j

�
P
A

zA
R1

k¼0
k @
@k V0;A:elec kð Þ
� 	

Ndk ð36Þ

¼
P
A

ZAV0;A;elecþ 1
2

P
A

ZA

P
B6¼A

ZB

RB�RAj j

�
P
A

zA
R1

k¼0
k @
@k V0;A:elec kð Þ
� 	

Ndk ð37Þ

Since, by Eq. 12,

V0;A;nuc ¼
X

B6¼A

ZB

RB � RAj j ð38Þ

then combining Eqs. 15 and 37 gives,

=mol Velec rð Þ½ � ¼ �
X

A

zA

Z1

k¼0

k
@

@k
V0;A:elec kð Þ
� 	

Ndk ð39Þ

Equation 39 is the molecular version of Eq. 24.

Discussion and summary

Equations 24 and 39 are rigorous formulations of the
kinetic energy and electronic interaction contributions to
the total energy. Thus they are analogues of the
Hohenberg–Kohn F[q(r)], but written as functionals of
Velec(r). Again, the molecular expression is essentially a
summation of its atomic counterpart over the individual
atoms. As stipulated by Eq. 15, there is no nuclear
interaction term in the molecular formula, Eq. 39, even
though it appears in both parts of Eq. 35, from which
Eq. 39 was derived.

The determination of atomic and molecular energies
by means of Eqs. 18–20, 33, and 34, which are exact,
encounters the problem that the integrals are to be
evaluated with the number of electrons being held
constant. This requirement can be avoided, however, by
assuming that the chemical potentials of the sys-
tems are zero or negligible [48, 49, 50]; the integrations

can then be carried out over, for example, neutral
rather than isoelectronic sequences. This approach has
been tested, with overall encouraging results [44, 48, 49,
50]. It could be applied as well to the evaluation of
=at[Velec(r)] and =mol[Velec(r)] via Eqs. 24, 27, and 39, in
which the restriction that N be held constant also ap-
plies. Another promising technique that we are currently
investigating [51] is based upon recognition of the fact
that atomic and molecular ions with charges more neg-
ative than )1 are usually not stable in the gas phase [52,
53, 54].

Our focus in this paper has been primarily upon
expressing atomic and molecular energies as functionals
of Velec(r), taking the Hohenberg–Kohn theorem as our
starting point. Other aspects of the fundamental nature
of the electrostatic potential as a determinant of atomic
and molecular properties have been discussed and
summarized elsewhere [29, 33, 34, 36, 37 ,55, 56, 57].
They include its relationship to the chemical potential/
electronegativity [33, 34, 55, 58, 59] and to covalent [37,
59, 60] and anionic [61, 62] radii. The role of the elec-
trostatic potential with respect to molecular interactive
behavior has already been mentioned. In this context, we
also note the intriguing indications of a relationship
between Velec(r) and local hardness/polarizability [63, 64,
65, 66]. This is being studied [67].
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